Selective Enrichment of Membrane Proteins by Partition Phase Separation for Proteomic Studies
نویسندگان
چکیده
The human proteome project will demand faster, easier, and more reliable methods to isolate and purify protein targets. Membrane proteins are the most valuable group of proteins since they are the target for 70-80% of all drugs. Perbio Science has developed a protocol for the quick, easy, and reproducible isolation of integral membrane proteins from eukaryotic cells. This procedure utilizes a proprietary formulation to facilitate cell membrane disruption in a mild, nondenaturing environment and efficiently solubilizes membrane proteins. The technique utilizes a two-phase partitioning system that enables the class separation of hydrophobic and hydrophilic proteins. A variety of protein markers were used to investigate the partitioning efficiency of the membrane protein extraction reagents (Mem-PER) (Mem-PER is a registered trademark of Pierce Biotechnology, Inc) system. These included membrane proteins with one or more transmembrane spanning domains as well as peripheral and cytosolic proteins. Based on densitometry analyses of our Western blots, we obtained excellent solubilization of membrane proteins with less than 10% contamination of the hydrophobic fraction with hydrophilic proteins. Compared to other methodologies for membrane protein solubilization that use time-consuming protocols or expensive and cumbersome instrumentation, the Mem-PER reagents system for eukaryotic membrane protein extraction offers an easy, efficient, and reproducible method to isolate membrane proteins from mammalian and yeast cells.
منابع مشابه
Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملDevelopment and Application of Aqueous Two-Phase Partition for the Recovery and Separation of Recombinant Phenylalanine Dehydrogenase
Aqueous two-phase systems (ATPS) have emerged as a powerful extraction method for the downstream processing of bio-molecules. The aim of this work was to investigate the possibility of utilizing ATPS for the separation of recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH). Polyethylene glycol (PEG) and ammonium sulfate systems were selected for our experi...
متن کاملSupported Liquid Membrane in Metal Ion Separation: An Overview
Using liquid membrane and, in particular, supported liquid membrane (SLM) is a novel method of separation in comparison to other methods such as adsorption, extraction and ion exchange. SLM is a combination of simultaneous extraction and disposal whose high efciency and capability is proven by many studies. So far, many researchers have utilized SLM in various scientifc...
متن کاملFabrication of Crosslinkable Hollow Fiber Membranes for Pervaporation Dehydration
Integrally-skinned asymmetric Polyetherimide/Poly (vinyl alcohol) (PEI/PVA) hollow fber membranes for pervaporation dehydration were fabricated by non-solvent induced phase inversion. PVA inside the PEI matrix could be crosslinked to provide membrane performance stability during long term operation. The effects of different PEI/PVA blend ratio, external coagulant type and...
متن کاملGas Selective Properties of Poly(4-Methyl-1-Pentene) Modifed by Gas Phase Fluorination
Fluorine-containing polymers have a number of valuable physical and chemical properties, such as high chemical and heat resistance, high mechanical strength and highly selective gas separation characteristics. One of the ways to produce fluoropolymer membranes is through surface fluorination. The modifcation of commercial polymers with membrane properties, poly(4-methyl-1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Biomedicine and Biotechnology
دوره 2003 شماره
صفحات -
تاریخ انتشار 2003